QUIZ 19 SOLUTIONS: LESSON 26 NOVEMBER 2, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [10 pts] A rectangular box with a square base is to be constructed from materials that cost $\$ 10$ per square foot for the sides, top, and bottom. What is the minimum cost to construct a box with a volume of 1,000 cubic feet?

Recall that the method of LaGrange multipliers requires solving the following system of equations:

$$
\begin{aligned}
f_{x} & =\lambda g_{x} \\
f_{y} & =\lambda g_{y} \\
g(x, y) & =C
\end{aligned}
$$

where f is the function we are minimizing and $g(x, y)=C$ is a constraint.
Solution: We want to minimize the cost of the box. Since the box has a square base, our variables will be the width w and the height h. Then the cost function is given by

$$
C(w, h)=10\left(2 w^{2}+4 w h\right)=20 w^{2}+40 w h .
$$

We are told that the volume $V=w^{2} h$ is 1,000 cubic feet. This is the constraint. We write

$$
\begin{aligned}
40 w+40 h & =\lambda(2 w h) \\
40 w & =\lambda\left(w^{2}\right) \\
w^{2} h & =1,000
\end{aligned}
$$

By the second equation, we see that $\lambda=\frac{40}{w}$. Plugging this into the first equation, we get

$$
\begin{aligned}
40 w+40 h & =\underbrace{\left(\frac{40}{w}\right)}_{\lambda}(2 w)=40(2 h) \\
\Rightarrow \quad w+h & =2 h \\
\Rightarrow \quad w & =h
\end{aligned}
$$

By the last equation,

$$
w^{2} h=w^{3}=1,000 \Rightarrow w=10
$$

We conclude that $h=w=10$.
Therefore, the minimum cost of the box is

$$
C(10,10)=20(10)^{2}+40(10)(10)=20(100)+40(100)=60(100)=\$ 6,000 .
$$

